User Tools

Site Tools


miage_solution:solution_kodja_markov_2_etats

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
miage_solution:solution_kodja_markov_2_etats [2017/01/08 19:42]
melancon
miage_solution:solution_kodja_markov_2_etats [2018/01/21 20:13] (current)
melancon
Line 20: Line 20:
  
 $$ $$
-P(X_1 = 0 | X_0 = 0, X_2 = 0) = \frac{P(X_1 = 0 \X_0 = 0 \X_2 = 0)}{P(X_0 = 0 \X_2 = 0)}+P(X_1 = 0 | X_0 = 0, X_2 = 0) = \frac{P(X_1 = 0 \cap X_0 = 0 \cap X_2 = 0)}{P(X_0 = 0 \cap X_2 = 0)}
 $$ $$
  
Line 26: Line 26:
  
 $$ $$
-P(X_0 = 0 \X_2 = 0) = P(X_0 = 0 \X_1 = 0 \X_2 = 0) + P(X_0 = 0 \X_1 = 1 \X_2 = 0)+P(X_0 = 0 \cap X_2 = 0) = P(X_0 = 0 \cap X_1 = 0 \cap X_2 = 0) + P(X_0 = 0 \cap X_1 = 1 \cap X_2 = 0)
 $$ $$
  
Line 32: Line 32:
  
 $$ $$
-P(X_1 = 0 | X_0 = 0, X_2 = 0) = \frac{P(X_1 = 0 \X_0 = 0 \X_2 = 0)}{P(X_0 = 0 \X_1 = 0 \X_2 = 0) + P(X_0 = 0 \X_1 = 1 \X_2 = 0)}+P(X_1 = 0 | X_0 = 0, X_2 = 0) = \frac{P(X_1 = 0 \cap X_0 = 0 \cap X_2 = 0)}{P(X_0 = 0 \cap X_1 = 0 \cap X_2 = 0) + P(X_0 = 0 \cap X_1 = 1 \cap X_2 = 0)}
 $$ $$
  
Line 38: Line 38:
  
 $$ $$
-P(X_2 = 0 \X_1 = 0 \X_0 = 0) = P(X_2 = 0 | X_1 = 0) P(X_1 = 0 | X_0 = 0) P(X_0 = 0)+P(X_2 = 0 \cap X_1 = 0 \cap X_0 = 0) = P(X_2 = 0 | X_1 = 0) P(X_1 = 0 | X_0 = 0) P(X_0 = 0)
 $$ $$
 $$ $$
-P(X_2 = 0 \X_0 = 1 \X_0 = 0) = P(X_2 = 0 | X_1 = 1) P(X_1 = 1 | X_0 = 0) P(X_0 = 0)+P(X_2 = 0 \cap X_0 = 1 \cap X_0 = 0) = P(X_2 = 0 | X_1 = 1) P(X_1 = 1 | X_0 = 0) P(X_0 = 0)
 $$ $$
  
Line 63: Line 63:
  
 [[miage:​td_analytique|Retourner au TD]] [[miage:​td_analytique|Retourner au TD]]
 +
miage_solution/solution_kodja_markov_2_etats.txt · Last modified: 2018/01/21 20:13 by melancon